On Propagation of Excitation Waves in Moving Media: The FitzHugh-Nagumo Model
نویسندگان
چکیده
BACKGROUND Existence of flows and convection is an essential and integral feature of many excitable media with wave propagation modes, such as blood coagulation or bioreactors. METHODS/RESULTS Here, propagation of two-dimensional waves is studied in parabolic channel flow of excitable medium of the FitzHugh-Nagumo type. Even if the stream velocity is hundreds of times higher that the wave velocity in motionless medium (), steady propagation of an excitation wave is eventually established. At high stream velocities, the wave does not span the channel from wall to wall, forming isolated excited regions, which we called "restrictons". They are especially easy to observe when the model parameters are close to critical ones, at which waves disappear in still medium. In the subcritical region of parameters, a sufficiently fast stream can result in the survival of excitation moving, as a rule, in the form of "restrictons". For downstream excitation waves, the axial portion of the channel is the most important one in determining their behavior. For upstream waves, the most important region of the channel is the near-wall boundary layers. The roles of transversal diffusion, and of approximate similarity with respect to stream velocity are discussed. CONCLUSIONS These findings clarify mechanisms of wave propagation and survival in flow.
منابع مشابه
Spatio-Temporal Modelling of Wave Formation in an Excitable Chemical Medium based on a Revised FitzHugh-Nagumo Model
The wavefront profile and the propagation velocity of waves in an experimentally observed Belousov-Zhabotinskii reaction are analyzed and a revised FitzHumgh-Nagumo(FHN) model of these systems is identified. The ratio between the excitation period and the recovery period, for a solitary wave are studied, and included within the model. Averaged travelling velocities at different spatial position...
متن کاملScroll Wave Turbulence
Figure 1: Scroll wave turbulence developed from a scroll with a curved filament. Simulation of FitzHugh-Nagumo model in 3D, parameters as in (Biktashev 1998). Red surfaces are fronts (u=0,v<0) blue surfaces are backs (u=0,v>0) of excitation waves, and yellow lines are singularities (u=0,v=0)rotating around slowly moving scroll filaments, where u,v are respectively the activator and inhibitor fi...
متن کاملar X iv : n lin / 0 50 80 20 v 1 [ nl in . P S ] 1 2 A ug 2 00 5 Asymptotic properties of mathematical models of excitability
We analyse small parameters in selected models of biological excitability, including Hodgkin-Huxley (1952) model of nerve axon, Noble (1962) model of heart Purkinje fibres, and Courtemanche et al. (1998) model of human atrial cells. Some of the small parameters are responsible for differences in the characteristic timescales of dynamic variables, as in the traditional singular perturbation appr...
متن کاملAnalysis of the Activation Propagation Velocity in the Slab Model of the Cardiac Tissue
In the study, the activation propagation velocity in cardiac tissue was simulated in COMSOL Multiphysics environment using the modified FitzHugh-Nagumo model of the electrical excitation. The influence of different model parameters and stimulation conditions on the activation propagation velocity was evaluated. The homogeneous slab model was used as the model of the atrial wall. Results of simu...
متن کاملPattern Formation of the FitzHugh-Nagumo Model: Cellular Automata Approach
FitzHugh-Nagumo (FHN) model is a famous Reaction-Diffusion System which first introduced for the conduction of electrical impulses along a nerve fiber. This model is also considered as an abstract model for pattern formation. Here, we have used the Cellular Automata method to simulate the pattern formation of the FHN model. It is shown that the pattern of this model is very similar to those...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009